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The motion of a rigid ellipsoidal particle freely suspended in a Poiseuille flow of an 
incompressible Newtonian fluid through a narrow tube is studied numerically in the 
zero-Reynolds-number limit. It is assumed that the effect of inertia forces on the 
motion of the particle and the fluid can be neglected and that no forces or torques 
act on the particle. The Stokes equation is solved by a finite element method for 
various positions and orientations of the particle to yield the instantaneous velocity 
of the particle as well as the flow field around it, and the particle trajectories are 
determined for different initial configurations. A prolate spheroid is found to either 
tumble or oscillate in rotation, depending on the particleetube size ratio, the axis 
ratio of the particle, and the initial conditions. A large oblate spheroid may approach 
asymptotically a steady, stable configuration, at which it is located close to the tube 
centreline, with its major axis slightly tilted from the undisturbed flow direction. The 
motion of non-axisynimetric ellipsoids is also illustrated and discussed with emphasis 
on the effect of the particle shape and size. 

1. Introduction 
In a recent paper, we presented a numerical study of the motion of an elliptical 

cylinder in a Poiseuille flow between two parallel plates in the limit of Stokes flow 
(Sugihara-Seki 1993). It was found that a cylinder that is freely suspended in a 
Poiseuille flow either tumbles or oscillates in rotation. In the tumbling motion, the 
particle rotates continuously with angular velocity in the direction of the vorticity ; 
in the oscillatory motion, the particle periodically swings about a particular lateral 
position, changing its direction of rotation during a certain part of each period. 

In this paper we extend the numerical study to a three-dimensional case. We 
consider the motion of a neutrally buoyant ellipsoidal particle in a narrow tube, 
with negligible inertial effects. This type of flow is encountered in a broad range of 
biological and engineering fields; examples include blood flow in the microcirculation, 
flow due to the motion of proteins in various biomedical applications, and the 
dynamics of solute molecules through pores or capsules flowing through tubes or 
pipes. 

Early studies of the motion of a particle under the effect of walls were reviewed 
by Happel & Brenner (1983), and Clift, Grace & Weber (1978). The method of 
reflections furnishes a basis for the analysis of wall effects, as long as the particle 
dimensions are small with respect to the tube diameter. More recent develop- 
ments including numerical methods in Stokes flow are discussed by Kim & Karrila 
(1991). 
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One of the simplest configurations considered by previous authors concerns the 
axisymmetric motion of a particle, or a periodic array of particles, along the axis of 
a circular tube. Wang & Skalak (1969) treated an infinite line of spheres located at 
the tube centreline using a singularity method, and Leichtberg, Pfeffer & Weinbaum 
(1976) considered the flow past a finite coaxial array of spheres. With regard to 
the motion of ellipsoids in tube flow, Wakiya (1957) expressed the flow around a 
single spheroid in a cylindrical tube using ellipsoidal harmonics, based on the classical 
solution by Oberbeck (1876), when the axis of revolution is along the tube centreline. 
A periodic array of spheroids located at the tube centreline was studied using a 
singularity method and a lubrication approximation by Chen & Skalak (1970). These 
studies of axisymmetric configurations do not involve rotary motions of the particle, 
as expected from symmetry. 

A few studies have considered the motion of a particle located at an off-axis 
position in a tube. The flow of eccentric, closely fitting spheres in a tube is treated 
by Bungay & Brenner (1973) using a singular perturbation technique, and the flow 
of a spherical particle placed slightly off the axis is considered by Tozeren (1982), 
as a regular perturbation of the axisymmetric problem. In these configurations, a 
spherical particle freely suspended in tube flow exhibits no lateral motion. 

Analyses using lubrication theory for closely fitting particles within a tube have 
also mainly treated steady motion, free of any lateral migration and rotation (Tozeren 
& Skalak 1978; Secomb et al. 1986). Exceptions are the studies of Hsu & Secomb 
(1989) and Secomb & Hsu (1993), which considered the motion of non-axisymmetric 
particles resembling red cell shapes in capillaries, and the stability of the motion of 
axisymmetric particles at the tube axis, respectively. 

Recent developments of computational techniques have enabled the efficient treat- 
ment of particle-boundary interactions in Stokes flow (see for example, Weinbaum, 
Ganatos & Yan 1990; Kim & Karrila 1991; Pozrikidis 1992; Zhou & Pozrikidis 
1995). Pozrikidis (1994) studied the motion of spheroids in a channel with parallel- 
sided walls using a boundary integral equation method, and found that the behaviour 
of spheroids in shear flow is largely dependent on the particle aspect ratio and the 
particle size relative to the channel width. Hsu & Ganatos (1994) used the boundary 
integral technique to consider the motion of a neutrally buoyant spheroid freely sus- 
pended in shear flow adjacent to a plane wall, and found that the spheroid undergoes 
a periodical motion toward and away from the wall as it continually tumbles forward. 

With regard to the motion of an ellipsoid in an unbounded simple shear flow, 
Jeffery (1922) solved exactly the Stokes equations in an analytical form for two cases: 
( a )  an ellipsoid of revolution, i.e. a spheroid, and (b)  a general (non-axisymmetric) 
ellipsoid, for the special case where the ellipsoid rotates about a principal axis that 
is permanently aligned with the undisturbed vorticity vector. In the first case, the 
motion of the spheroid was found to consist of a spin about the axis of symmetry, 
and a precession of this axis about the vorticity vector of the undisturbed flow. 
The solution for a general ellipsoid in the second case was shown to be identical 
to that governing the time evolution of the projection of the symmetry axis of the 
spheroid onto the plane of shear flow. According to Jeffery’s analysis, an ellipsoid will 
continue such a periodic motion indefinitely, unless its motion is disturbed by fluid 
and particle inertia, hydrodynamic or electrical interactions with nearby particles, 
Brownian rotations, or non-Newtonian properties of the suspending fluid. 

The more general motion of non-axisymmetric ellipsoids in shear flow was studied 
by Hinch & Leal (1979), and their computation showed that the motion of an ellipsoid 
is doubly periodic: a relatively rapid rotation which corresponds to the motion of 
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axisymmetric particles around Jeffery orbits, and a slower drift which would be 
describable as a periodic change in the orbit if the particle were axisymmetric. 
Their examination of the stability of planar rotation about one of the principal 
axes of ellipsoids showed that the particle can execute stable planar rotations if the 
intermediate axis is aligned with the undisturbed vorticity. 

Effects of quadratic velocity profiles on the motion of a prolate spheroid were 
studied by Chwang (1975), who considered the motion of a force-free particle in 
an unbounded paraboloidal flow using the singularity method. It was found that a 
prolate spheroid rotates as if it were immersed in a linear shear flow with a shear 
rate equal to that of the paraboloidal flow evaluated at the centre of the particle, and 
translates along a straight path parallel to the main flow direction without any side 
drift, which is not necessarily required by reversibility of Stokes flow. 

Experimental studies of the motion of a single rigid particle in the Stokes flow 
regime have been, to the author’s knowledge, largely confined to axisymmetric par- 
ticles in a very large domain compared to the particle size or near a single plane 
wall. As Bretherton (2962) showed theoretically, it was observed that the motion of 
a single axisymmetric particle in an unbounded simple shear flow is identical to that 
of spheroids, provided that the effective axis ratio is set equal to the actual axis ratio 
for spheroidal particles, but must be determined experimentally for other particle 
shapes. A series of experimental studies by Mason, Goldsmith and coworkers has 
shown that the motions of rods and discs in Couette flow or tube flow at very low 
Reynolds numbers are in excellent agreement with Jeffery’s model if the value of 
effective axis ratio is determined experimentally from the period of the rotary mo- 
tion (see, for example, Goldsmith & Mason 1967). Stover & Cohen (1990) carefully 
examined the motion of a rodlike particle suspended in a shear flow near a wall, 
and found that the particle exhibits a tumbling motion even if an end of the particle 
passes very close to the wall during its rotation. The period of rotation increases 
with decreasing the gap width between the particle and the wall. When the particle 
comes extremely close to the wall, with the axis of symmetry almost lying in the 
plane of the shear flow, an irreversible non-hydrodynamic interaction between the 
particle and the wall takes place, and moves the particle away from the wall to a point 
where the distance between the centre of the particle and the wall is nearly equal 
to a half of the particle length (pole vaulting interaction). After this ‘pole vaulting’ 
interaction, the particle was observed to continue in a reversible periodic tumbling 
motion. 

In this paper we consider only the motion where two of the three principal axes 
of the ellipsoid lie in a plane containing the tube axis so that the fluid motion is 
symmetric with respect to this plane. This is mainly to simplify the computation, 
which enables us to halve the computational domain, and thus reduce the size of 
the memory by one quarter. Nevertheless, we believe that this assumption may be 
a good starting point for the analysis of the general motion of an ellipsoid in tube 
flow. Under the corresponding assumption, the motion of an ellipsoid in unbounded 
simple shear flow is known to be stable if the intermediate axis is parallel to the 
undisturbed vorticity, as mentioned above. 

The instantaneous velocities of the particle at arbitrary positions and orientations, 
and the flow of the suspending fluid are solved numerically by a finite element 
method. Using the computed particle linear and angular velocities, the trajectories 
of the particle are determined for various initial lateral positions and orientations. 
The present work is aimed at elucidating the behaviour of an ellipsoid in tube flow, 
depending on the particle size, axis ratios and initial conditions. 
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FIGURE 1. Configuration for an ellipsoid freely floating in a tube flow. 

2. Formulation 
Consider an ellipsoid with semi-axes a,b and c (a 2 b)  in a tube with radius R 

(figure 1). The particle is assumed to be neutrally buoyant, and to move freely in a 
Poiseuille flow of an incompressible Newtonian fluid with viscosity p. We assume that 
the principal axes a and b of the ellipsoid initially lie in a plane containing the tube 
axis, so that the configuration is symmetric with respect to the plane. In the present 
study, this condition is satisfied at any instant, because the translational velocity of 
the particle perpendicular to the plane and the components of the angular velocity in 
the plane always vanish, as expected from symmetry. 

Expressing the maximum velocity of the undisturbed Poiseuille flow as Urn,,, we 
make all variables non-dimensional with respect to Urn,,, R and p. Pressures and 
stresses are non-dimensionalized with respect to p U,,,/R. A Cartesian coordinate 
system (x1,x2,x3) fixed relative to the tube wall is introduced such that the xl-axis 
is along the tube centre, and the (XI, x*)-plane coincides with the plane of symmetry 
containing the principal axes a and b of the ellipsoid. At any instant, the centre of the 
ellipsoid is at ( X ,  Y,O), and the principal axis a forms an angle 0 with the direction 
of the undisturbed stream. 

We assume that the effects of inertial forces on the motion of the fluid and the 
particle are neglected. Thus, the fluid velocity u and the pressure p satisfy the Stokes 
equation and the continuity equation : 

vp = v2u, (1) 

v * u  = 0. (2) 
The velocity at the tube wall is zero, and the no-slip and no-penetration conditions 

are applied on the surface of the particle. The inflow and outflow boundaries are at a 
distance 1 upstream and downstream of the centre of the particle, where the Poiseuille 
velocity profile is assumed. In most cases, we adopted 1 = 5. 

Since we have assumed that the inertial effects on the particle motion can be 
neglected, the resultant force F and torque T exerted on the particle by the fluid 
stresses on its surface vanish at every instant: 
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and 

(4) 

where c, r and ds represent the stress tensor, the position vector relative to the 
centre of the particle, and a surface element of the particle, and the integrations are 
carried out over the surface of the particle. These quasi-steady conditions determine 
the translational velocity U = ( U ,  V ,  0) and the angular velocity 52 = (O,O, S Z )  of the 
particle. Note that the x3-component of U and the xl-  and x2-components of the 
angular velocity always vanish as noted before. 

Since the flow is symmetric with respect to the (xl,x2)-plane, it is sufficient to 
consider half of the flow domain. Then the computational domain can be chosen 
as D { ( X I , X Z , X ~ )  : X - 1 < XI < X + /,(xi + < 1,x3 3 0). Given the position 
and orientation of the ellipsoid, its motion and the flow of the suspending fluid 
in the domain D are computed by a finite element method, based on a variational 
principle (Sugihara-Seki 1995). Briefly, a variational functional that produces the 
Stokes equation may be obtained as (Olson & Tuann 1978) 

Considering independent variations of (u, p) and ( U ,  a), the variation of J can be 
expressed as 

d ~ l d ~ Z d ~ 3  - F16Ul - TL6SZ,. ( 6 )  

Thus, requiring that J is stationary with respect to (u, p) and ( U ,  52) under appropriate 
boundary conditions yields equations (l), (2), (3), and (4) as the Euler equations of 
the variational principle. 

In the numerical procedure, the domain D is divided into a number of finite 
elements. A typical grid is shown in figure 2. Each element has a hexahedral shape 
with 27 nodes including eight corner nodes (Sugihara-Seki 1995). Using the values 
of the velocity at the 27 nodes and the values of the pressure at the eight corner 
nodes, the velocity and pressure within each element are approximated by quadratic 
and linear functions in terms of local coordinates, respectively. The nodal values of 
(u, p )  and ( U ,  52) are to be determined. Substituting the expressions for the velocity 
and pressure into equation (9, and following a variational principle, we obtain a set 
of linear equations for the nodal values of ( u , p )  and (U,52). These equations are 
solved numerically using a Gaussian elimination method, under appropriate boundary 
conditions. A typical mesh has 432 elements, 4291 nodes and 9887 unknowns. A 
representative run with double-precision arithmetic takes approximately 300 s on a 
FACOM VP-2600 Computer at the Data Processing Centre, Kyoto University, Japan. 

For several values of a, b and c, computations were carried out for various selected 
values of the lateral position Y and angle of inclination 8, in the physically accessible 
range of 0 < Y < 1 and 0 < 8 < n/2,  to obtain the longitudinal, lateral and angular 
velocities of the particle, U ,  V and 52. The equations of motion of the particle: 

- = 52, 
dtl 

~ = v, dY 
~ = U ,  
dX 
dt dt dt (7) 

are solved by Euler’s method, and the trajectory of the particle is determined for 
various initial configurations. 

In order to assess the numerical accuracy of the present finite element method, we 
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FIGURE 2. Typical grid for the finite element method. Only half of the computational domain 
(x2 0) is shown for clarity. 

compare our results with those of previous studies, for four cases: (i) a sphere placed 
at the tube centreline, (ii) a sphere placed slightly off-axis, (iii) a spheroid placed at the 
tube centreline with its symmetrical axis aligned to the undisturbed flow direction, and 
(iv) a small prolate spheroid in tube flow. Comparisons are made with the results of 
Wang & Skalak (1969), Chen & Skalak (1970) and Bungay & Brenner (1973) in case 
(i), Tozeren (1982) and Bungay & Brenner (1973) in case (ii), Wakiya (1957) and Chen 
& Skalak (1970) in case (iii), and Chwang (1975) in case (iv). In all cases, excellent 
agreement was obtained except for very small particles. The difference between the 
present solutions and the previous results for the translational and angular velocities 
of a spherical particle (cases (i) and (ii)) is within the order of 0.1% for a < 0.9, and it is 
less than 1.5% for 0.9 < a < 0.98. The error of the translational velocity of a spheroid 
in case (iii) is less than 0.1%. In case (iv), the longitudinal and angular velocities of 
a prolate spheroid with a = 0.3, b = c = 0.1 at various orientations were found to 
agree with the analytical solutions for the particle in an unbounded paraboloidal flow 
within the order of which should be 
exactly zero if it were immersed in an unbounded paraboloidal flow. These differences 
include the effect of the tube wall as well as numerical errors of the present scheme. 

and the lateral velocity was less than 

3. Particle velocities 
The results of a typical run for a prolate spheroid with a = 0.8 and b = c = 0.2 

are shown in figures 3(a) and 3(b), which show velocity vectors and pressure contours 
of the suspending fluid in the plane of symmetry x3  = 0, and pressure contours on 
the particle surface. Since the particle is located at the tube centreline, it exhibits 
only a lateral motion with no rotation, as expected from symmetry and reversibility 
arguments. In this case, the particle moves upward. The flow patterns and pressure 
contours in the plane of symmetry shown in figure 3 are quite similar to those for the 
two-dimensional case (elliptic cylinders in channel flow) (see figure 5 in Sugihara-Seki 
1993). The pressure distribution on the particle surface along the circumference at 
x3 = 0, in particular, is very similar to that in the two-dimensional case. 

Next, we consider the velocities of an ellipsoid and the pressure drop along the 
tube, at various configurations of the particle. Figure 4 shows the dimensionless 
velocities U ,  V ,  52, and the additional pressure drop A(p - po)  due to the particle, 
for ellipsoids with a = 0.8, b = 0.2 and various values of c located at several lateral 
positions. Here, po denotes the pressure in the absence of the particle (i.e. due to 
the undisturbed Poiseuille flow) and A denotes the difference between the upstream 
(at x1 = X - I) and downstream values (at x1 = X + 2). The curves shown in 
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FIGURE 3. (a )  Velocity vectors of the suspending fluid in the plane x3 = 0 relative to the longitudinal 
velocity of a prolate spheroid with a = 0.8 and b = c = 0.2, located at the tube centreline with 
0 = n/6.  The solid curves represent some typical streamlines. (b)  Pressure contours of the suspending 
fluid in the plane x3 = 0, and those on the particle surface. The numbers denote the values of 
p - pm, where pm represents the average of the upstream (at x1 = X - I )  and downstream pressures 
(at xI = X + I ) .  

figure 4 are quite similar in shape to the corresponding curves for elliptic cylinders 
in channel flow (see figures 6 and 7 in Sugihara-Seki 1993). As for large and/or 
slender elliptic cylinders, the angular velocity of the oblate spheroid becomes negative 
when it is located off the centre of the tube with its major axis almost aligned to 
the tube axis (see Figure 4c). Since the negative angular velocity of the particle can 
be explained in terms of a lubrication force generated between the particle and the 
tube wall (Sugihara-Seki 1993), it is reasonable that we are more likely to observe 
this phenomenon for ellipsoids with larger c. In figure 4, a notable difference between 
the two- and three-dimensional motion is that the lateral velocity I/ of the oblate 
ellipsoid at the tube centreline is negative at small inclinations (see figure 4c), while 
V of elliptic cylinders is positive for all orientations. A physical explanation of the 
negative lateral velocity of oblate spheroids at small orientations will be given in 
54.2. 

The dependence of the particle velocities U ,  V ,  Q and the additional pressure drop 
A(p - PO) on the particle size is comparable to that for elliptic cylinders reported in 
Sugihara-Seki (1993), and will not be repeated here. An interesting feature emerges 
by comparing the angular velocity of a prolate spheroid with that in an unbounded 
paraboloidal flow (see rectangles in figure 4a), corresponding to a particle with the 
same axis ratios that is very small relative to the tube radius. For small 8, the presence 
of the tube wall reduces the angular velocity of the particle, but it enhances the angular 
velocity when the major axis of the particle is oriented nearly perpendicular to the 
tube axis. This occurs because the longitudinal motion of the particle causes it to 
roll along the wall and this contribution to the angular velocity is in addition to 
the angular velocity induced by the shear flow in the absence of the wall. A similar 
phenomenon has been reported for spheroids near a plane wall (Hsu & Ganatos 1994). 



294 M .  Sugihara-Seki 

0.01 

A-+, bk 
0 s- 

\.+--. -+ / *  

-0.01 

v -0.02 

-0.03 I I I I 

" O  7 I 

0 7114 71i2 0 xI4 I 

8 8 
0 71i4 

8 
2 

FIGURE 4. Particle velocities U ,  I/, 52 and additional pressure drop A(p - po) ,  for ellipsoids with 
a = 0.8,b = 0.2 and, (a) c = 0.2, (b)  c = 0.4, and (c) c = 0.8, at lateral positions: A, Y = 0 ;  f, 
Y = 0.15; x, Y = 0.3. In (a), rectangles represent the values of the angular velocity for a prolate 
spheroid with a = 0.8, b = c = 0.2 located at Y = 0.15 in an unbounded paraboloidal flow (Chwang 
1975). In (c), the additional pressure drop is scaled down by a factor 0.4. 

For the velocity component U ,  of great interest is the slip velocity Us of the ellipsoid 
centre relative to the local fluid velocity of the undisturbed flow, i.e. Us = U - (  1 - Y 2 ) .  

Figure 5 shows the slip velocity as a function of the inclination angle 0 for ellipsoids 
with a = 0.8, b = 0.2 and various values of c located at three lateral positions. The 
slip velocity is always negative for all orientations and lateral positions, indicating 



The niotion of an ellipsoid in tube fk)w 295 

0.4 

0 3  

-u, 0.2 

0. I 

I 
0 n14 

e 
7114 n 

e 
0 n14 n 

8 
2 

FIGURE 5. Slip velocity U ,  for ellipsoids with a = 0.8, h = 0.2 and (a )  c = 0.2, ( h )  c = 0.4, and (c) 
c = 0.8, at lateral positions: A, Y = 0; f, Y = 0.15; x, Y = 0.3. In (u) ,  rectangles represent the 
values of' -U, for a prolate spheroid with u = 0.8, h = c = 0.2 in an unbounded paraboloidal flow 
(Chwang 1975). 

that the ellipsoid always lags behind the fluid in tube flow. For a given lateral 
position, the ellipsoid experiences the minimum slip when its major axis is aligned 
with the direction of flow ( I9  = 0), and its value is smaller for smaller c. Chwang 
(1975) obtained the velocity of a prolate spheroid freely floating in an unbounded 
paraboloidal flow, using the singularity method. His results of the slip velocity for 
a spheroid with a = 0.8,b = c = 0.2 are also shown in figure 5(a) ,  for comparison. 
It is remarkable to observe that the slip velocities of a spheroid in an unbounded 
paraboloidal flow and in tube flow nearly coincide, unless the particle is located 
very close to the wall. In addition, the slip velocity of a particle in tube flow is 
almost insensitive to the lateral position, as it is for a prolate spheroid in unbounded 
paraboloidal flow (see equation (53) in Chwang 1975). 

4. Particle trajectories 
In a two-dimensional study, Sugihara-Seki (1993) has reported that an elliptic 

cylinder freely suspended in a Poiseuille flow between two parallel plates exhibits 
one of the following three types of motion, depending on the axis ratio and initial 
conditions : ( i )  continuous rotation about the direction of the vorticity ; (ii) oscillation 
with its major axis swinging about I9 = n/2 and its centre swinging across the 
centreline; (iii) small-amplitude oscillation about 8 = 0. In type (iii) motion, the 
particle position is near the channel wall for small particles, while the oscillation is 
about the centreline for larger particles. 

The present three-dimensional computations demonstrate that similar scenarios 
occur for prolate spheroids ( a  > b = c), whereas other types of motion can also occur 
for oblate spheroids ( a  = c > b). These two cases will be discussed separately, and 
the discussion of the motion of non-axisymmetric ellipsoids will follow. 
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FIGURE 6. Lateral velocity V and angular velocity 52 of a prolate spheroid with a = 0.8 and 
b = c = 0.2. Each arrow shows a vector (I/, 52) when the lateral position and orientation of the 
particle are represented by the coordinates ( Y ,  Q) at the origin of the arrow; -, temporal variations 
of the lateral position and orientation of the particle starting from various initial values; - .  -, the 
critical configuration at which the particle touches the tube wall. The points P and P’ represent 
configurations at which both of V and s2 vanish. 

4.1. Prolate spheroids 
In order to analyse the trajectories of a spheroid starting from various initial con- 
figurations, we plot vectors of ( V ,  52) in the (Y ,  8)-plane, for a prolate spheroid with 
a = 0.8,b = c = 0.2, in figure 6. Each arrow in figure 6 shows a vector ( V , Q )  
of the particle whose configuration is represented by the coordinates (Y,8) at the 
origin of the arrow, and it represents the local direction of a particle trajectory in 
the (Y, 8)-plane. The solid curves show the temporal history of lateral position and 
orientation for some typical cases. A comparison with figure 9 in Sugihara-Seki 
(1993) shows that type (i), type (ii), and type (iii) motions are also present in the 
three-dimensional case. In the regions of motion type (iii), there are points P and 
P’ where both V and 52 vanish, so that the particle motion is steady. Of course, the 
points (Y ,  8) = (0, 0), (0, +n) and (0, fn/2) represent steady configurations. 

Typical examples of periodic evolutions of longitudinal and lateral positions and 
orientation X / L ,  Y , 6, and the additional pressure drop A(p-po) ,  as well as the particle 
velocities U ,  V ,  52 are plotted over a period as a function of time t / T  in figure 7. Here, 
T represents a period of motion, and L denotes the longitudinal distance at which 
the particle advances over a period. Figure 7 illustrates how the particle behaves 
in each type of motion. In the type (i) motion, the particle continuously rotates in 
the direction of the undisturbed vorticity. It can be shown that this rotary motion 
is approximated well by Jeffery’s solution with a so-called effective axis ratio that 
is determined from the period of rotation. In the case of figure 7(a), the effective 
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axis ratio is evaluated to be approximately 6.44, which is larger than the actual axis 
ratio 4. It is found that the value of the effective axis ratio, or equivalently the 
period of tumbling motion, becomes larger as the particle approaches the tube wall. 
This tendency is consistent with the experimental observation of the motion of rods 
near a plane wall by Stover & Cohen (1990). Furthermore, as shown in figure 6, 
part of the ellipsoidal surface can come very close to the tube wall during a type (i) 
motion, and this may increase the possibility of some non-hydrodynamic interactions 
between the particle and the wall that are not considered in the present study. Such 
interactions may include the ‘pole-vaulting’ interaction of rods near a plane wall 
which is possibly caused by mechanical contact between the particle and wall (Stover 
& Cohen 1990). 

Figure 7(b,c) shows that the type (ii) and (iii) motions are oscillatory, corresponding 
to closed loops of the particle trajectories in figure 6; in the type (ii) motion, the 
spheroid oscillates in rotation about 0 = n/2, swinging across the tube centreline; in 
the type (iii) motion, it oscillates about 8 = 0 with small amplitude, with its centre 
close to the tube wall. As a limiting case of the type (ii) motion, closed loops of the 
particle path in figure 6 are reduced to single points, ( Y , 8 )  = (O,kn/2), where the 
particle remains at the centreline as expected from symmetry arguments. For the type 
(iii) motion, a limiting trajectory is represented by point P or P’, where the particle 
is placed adjacent to the tube wall with its major axis aligned with the tube axis. 

In all types of motion, the particle translates with a periodically varying longitudinal 
velocity, which is analogous to the jerking motion of a prolate spheroid in an 
unbounded paraboloidal flow (Chwang 1975). The ratios of the maximum and the 
minimum values of U over a period are approximately equal to 1.25, 1.13, and 1.46 
for figure 7(a), 7(b) and 7(c), respectively. The considerable side drift observed in all 
three cases in figure 7 is apparently due to the presence of the tube wall: a spheroid 
in an unbounded paraboloidal flow has been reported to move along a straight path 
parallel to the undisturbed flow without any lateral motion (Chwang 1975). 

In figure 8, the Y -coordinate of the point P ,  Y *, is plotted as a function of a, for 
a /b  = 3 and 4. The results for oblate spheroids and two-dimensional cases are also 
shown for comparison. In all cases, Y * decreases with increasing a, until it reaches 
zero at a particular size, say the critical size a t ,  whose value depends on b and c. 
This result suggests that, as the particle size increases, the two separated regions of 
type (iii) motion near the Y-axis in the (Y, 0)-plane approach each other and touch 
the origin at a = a t .  The behaviour of larger spheroids with a closer to a t  and larger 
than a t  will be discussed later with reference to figure 9. A comparison between two- 
and three-dimensional results in figure 8 demonstrates that Y’ is always larger in 
three than that in two-dimensional, for given values of a and a/b, suggesting that 
type (iii) motion is less favoured in the former case. Since the presence of type (iii) 
motion is closely related to the lubrication force generated in a narrow gap between 
the particle and the wall (Sugihara-Seki 1993), this tendency may result from the fact 
that in three-dimensional the fluid can go around the particle along its side and 
produce a weaker lubrication force. 

Another interesting feature of figure 8 is that the value of Y *  for a /b  = 3 is larger 
than that for a /b  = 4 in the cases of two-dimensional and oblate spheroids, whereas 
the converse is true for prolate spheroids. This is presumably due to the effect of c :  
as shown later in figure 14(a), Y *  is, in general, smaller for larger c at given a and 
b. Since c is larger for prolate spheroids (b = c) with a/b = 3 than that for a /b  = 4 
at given a, the value of Y’ for a /b  = 3 may be smaller than that for a /b  = 4. It 
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FIGURE 7. Time variations of the longitudinal and lateral positions X / L ,  Y ,  the orientation 
angle 0, and the additional pressure drop A(p -PO), over a complete cycle for an ellipsoid with 
a = 0.8,b = c = 0.2. The time variations of the particle velocities U ,  V and Q are also shown by 
dashed curves. ( a )  Type (i) motion starting from ( Y ,  0) = (O.l,O), ( b )  type (ii) motion starting from 
(0, n/4), and (c) type (iii) motion staring from (0.75,O). In (c), Y - 0.5 instead of Y is plotted, 
and Q and 0 are scaled up by a factor 10, for clarity. The dash-dotted curves represent the values 
averaged over the period of motion. 

is apparent that this effect does not work for oblate spheroids (c = a) and elliptic 
cylinders in the two-dimensional case. 

Type (i) and type (ii) motions are inhibited for ellipsoids with a 3 1, because of 
the physical constraint that the particle cannot intersect the tube wall. In order to 
illustrate the motion of such large ellipsoids, figure 9(a) shows vectors of (I/, Q) and 
some representative trajectories for a spheroid with a = 1 and b = c = 0.25. Note 
that Y "  is positive (see figure 8) and the regions corresponding to type (i) and type 
(ii) motions still exist. Since type (i) and type (ii) motions are physically impossible in 
this case, we replace them by the new types (i') and (ii'), respectively. In these regions, 
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FIGURE 8. Lateral coordinates of point P ,  Y * : 0, prolate spheroids (a > b = c ) ;  0, oblate spheroids 
(a = c > h ) ;  A, two-dimensional cases (elliptic cylinders in channel flow). Solid curves represent 
a l b  = 4, and dashed curves a / b  = 3. 

the particle asymptotically approaches or departs from the point ( Y ,  0) = (0, n/2)  
or (O,-n/2). These points represent the configuration at which both ends of the 
major axis of the spheroid touch the tube wall, with the axis perpendicular to the 
undisturbed flow. 

Figure 9(b) shows the motion of a spheroid with a = 1.6 and b = c = 0.4. 
The particle is large enough that Y *  is no longer positive (see figure 8), so that 
the two separated regions of type (iii) motion near 6' = 0 in figures 6 and 9(a) 
are connected to one region covering the Y-axis in figure 9(h). In type (iii) mo- 
tion, the oscillation is about the centreline, as is for large elliptic cylinders in the 
two-dimensional case. In type (ii') motion, the particle asymptotically approaches 
or departs from the configuration at which both of upper and lower portions of 
the particle touch the tube wall, with its centre at the tube centreline. It is in- 
teresting to note that the origin in figures 6 and 9(a) is a saddle point, whereas 
the origin in figure 9(b) represents a neutrally stable configuration. This result for 
large prolate spheroids is in accord with that for closely fitting axisymmetric parti- 
cles in tube flow studied by Secomb & Hsu (1993). It  may be worth noting here 
that they suggest the possibility of oscillatory behaviour of a particle around this 
symmetrical configuration, which may correspond to the type (iii) motion shown in 
figure 9(h). 

4.2. Oblate spheroids 
Vectors of ( V , Q )  and some representative trajectories for a spheroid with a = c = 0.7 
and b = 0.175 are shown in figure 10. A striking feature is the presence of point Q 
on the &axis between 0 and n/2, say 6' = O * ,  where both V and s2 vanish. As a 
result, a new type of motion, called type (iv) motion, can occur near the origin in 
the ( Y ,  6)-plane. Here, the particle traces a closed loop about the origin moving in 
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FIGURE 9. Vectors ( V ,  52) for prolate spheroids: (a) a = 1.0, b = c = 0.25, ( b )  a = 1.6, b = c = 0.4. 
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FIGURE 10. Vectors ( V ,  52)  for an oblate spheroid with a = c = 0.7 and b = 0.175. The points Q and 

Q' represent configurations at which both of V and 52 vanish. 

the counter-clockwise direction; its centre oscillates with a small amplitude about the 
tube centreline, with its major axis swinging about 0 = 0. 

The negative sign of I/ in the range of 0 < 8 < 8* at Y = 0 for oblate spheroids 
is in contrast to its positive sign for prolate spheroids in that range (see figures 6 
and 9). As mentioned earlier, a finite lateral velocity of an ellipsoid in tube flow is 
undoubtedly due to wall effects. Based on the lubrication theory, the positive lateral 
velocity of prolate spheroids may be explained in terms of the distribution of pressure 
generated in the gap regions between the tube wall and the particle, i.e. the reduced 
pressure acting on the upper side of the particle and the enhanced pressure on the 
lower side (see figure 2h in Secomb & Hsu 1993). Although similar arguments seem 
to also apply for oblate spheroids, their lateral velocity is negative. 

In order to explain this phenomenon, we plot the velocity vectors and pressure 
contours in the plane of symmetry and the pressure contours on the particle surface 
in figure 11, for the oblate spheroid with a = c = 0.7,b = 0.175 at Y = 0 and 
19 = n/24(< 0'). A dominant feature is drastic variations in the pressure distribution 
on the particle surface near both ends of the principal axis c, close to the sidewall; as 
the lubrication theory predicts, pressure on the particle near the sidewall is positive at 
the downstream part, and negative at the upstream part (see figure llb,c). Although 
this pressure distribution does not produce any net force on the particle in the case 
of Y = 0 = 0, an inclined particle as shown in figure 11 may experience a force in 
the xz-direction: for the downstream part, the width of the gap between the particle 
and the wall is narrower at the upper than at the lower end, so that a net downward 
force acts on the particle, because the lubrication force is increased in a narrower gap. 
Similarly, a net downward force also acts on the particle on the upstream part near 
the sidewall. These forces may result in the downward lateral motion of the oblate 
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FIGURE 11. (a)  Velocity vectors of the suspending fluid in the plane xj = 0 around an oblate 
spheroid with a = c = 0.7 and b = 0.175, located at  the tube centreline with H = n/24. ( b )  Pressure 
contours in the plane x3 = 0 and on the particle surface. (c) Pressure contours on the particle 
surface: left, top view; right, bottom view. 

spheroid, for this configuration. For a more inclined spheroid, lubrication forces in 
the gap between the particle and the upper (lower) wall, not the sidewall, become 
larger, so that upward lateral motion may be induced, similarly to prolate spheroids. 

It can be shown that, as in the case of prolate spheroids, the neutrally stable points 
P and P’ exist in the regions of type (iii) motion (see figure lo), and these two points 
approach the origin with increasing particle size, until they coincide with the origin at 
a = a t  (see figure 8). Our computations show that the motion of an oblate spheroid 
with particle size above the critical value is significantly different from that of smaller 
spheroids. 

As an example of the motion of oblate spheroids with a > a t ,  figure 12 shows 
velocity vectors and some representative trajectories of a spheroid with a = c = 0.8 
and b = 0.2. Figure 12 suggests that a particle at any initial configurations except that 
in the region of type (ii) motion eventually approaches the points R1,R2,R3 or &, 
depending on the initial configuration (type (v) motion). All these points represent 
a configuration at which the particle is slightly off the centreline with its principal 
axis a somewhat deflected from the undisturbed flow direction toward the tube 
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FIGURE 12. Vectors ( V ,  a )  for an oblate spheroid with a = c = 0.8 and h = 0.2. The points R1, 
R? and & rcpresent stable equilibrium configurations while R; ,  R;, R; and R; are unstable. 

R? 1 

centreline. Figure 13 shows the velocity vectors of the suspending fluid and pressure 
contours for an oblate spheroid with a = c = 0.8 and b = 0.2 near the configuration 
corresponding to the point R I .  I t  is interesting that for large oblate spheroids there is 
a stable configuration that is different from the equilibrium configuration expressed 
as ( Y ,  0 )  = (0,O). Note that the origin in figure 10 is neutrally stable, while the origin 
in figure 12 is unstable. 

4.3. General ellipsoids 
As may be expected from $4.1 and $4.2, it is found that the behaviour of an ellipsoid 
freely suspended in tube flow can be divided into four classes (a)-(d), depending on 
the presence or absence of points P and Q in plots of particle velocities (V, f2)  in 
the ( Y ,  O)-plane (table I). The point P represents the configuration at which both of 
(I/, Q )  vanish for an ellipsoid with its major axis aligned with the undisturbed flow 
direction. The point Q represents the configuration at which (V,s2) vanish for an 
ellipsoid located at the tube centreline, the presence of which indicates the possibility 
of type (iv) and type (v) motions. In the case when point P is present and point Q 
is absent, type (i), type (ii) or type (iii) motion can occur depending on the initial 
configuration (class (a), see figures 6, 9a). When both points P and Q are absent, 
there are type (ii) and type (iii) motions (class (b), see figure 9b). When both points 
P and Q are present, type (iv) motion can occur in addition to type (i)-(iii) motions 
(class (c), see figure 10). When point P is absent and point Q is present, type (ii) 
motion and type (v) motion can occur (class (d), see figure 12). 

In $4.1 and $4.2, we showed that small prolate spheroids are classified in class (a) 
and large prolate spheroids are in class (b), while small oblate spheroids are in class 
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FIGURE 13. (a)  Velocity vectors of the suspending fluid in the plane x3 = 0 for an oblate spheroid 
with a = c = 0.8 and b = 0.2, at a stable equilibrium configuration corresponding to the point RI 
in figure 12. (b)  Pressure contours in the plane x3 = 0 and on the particle surface. 

Point Q: absent Point Q:  present 

Point P :  (a): type (i) motion (c): type (i) motion 
present type (ii) motion type (ii) motion 

type (iii) motion 
type (iv) motion 

Point P :  (b): type (ii) motion (d): type (ii) motion 
absent type (iii) motion type (v) motion 

TABLE 1. Classification of the behaviour of an ellipsoid in tube flow and possible types of 
particle motion. 

type (iii) motion 

(c) and large oblate spheroids are in class (d). In the present section, we consider the 
classification of the behaviour of non-axisymmetric ellipsoids. 

As representative examples of non-axisymmetric ellipsoids, we consider those with 
a = 0.8, b = 0.2 and various values of c. Figures 6 and 12 suggest that the particle 
behaviour is in class (a) for small c, whereas it is in class (d) for larger c. This 
prediction is confirmed in figure 14(a), which shows a plot of the Y-coordinate of 
point P ,  Y', and the &coordinate of point Q, O * ,  as a function of c, for a = 0.8 
and b = 0.2. Since positive values of Y' or 6* imply the presence of point P or 
Q, respectively, we see that point P is present for c < c t  while point Q is present 
for cg < c. Thus, figure 14(a) indicates that the particle behaviour is in class (a) for 
c < c t ,  and in class (d) for c > c t .  Figure 14(a) also suggests the presence of class 
(b) behaviour in the range of c t  < c < cg, in which both P and Q are absent. The 
presence of class (b) behaviour is shown by a numerical computation for an ellipsoid 
with a = 0.8,b = 0.2 and c = 0.7, where c t  < 0.7 < cs (a plot of the results is 
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FIGURE 14. The Y -coordinate of point P ,  Y * (-), and the 8 coordinate of point Q, 8' (- - - --). (a) 

Ellipsoids with a l b  = 4; 0, a = 0.8; 0, a = 0.9; A, a = 0.7. c t  and cs represent the values of c at 
which Y' and 8' reach zero, respectively. ( b )  Various ellipsoids; 0, a = 0.8 and c = 0.6; 0,  a = 0.9 
and c = 0.5; 0, a = 0.8 and c = 0.9; A, a = 0.9 and c = 0.9. 

not presented). Thus, the behaviour of ellipsoids with a = 0.8, b = 0.2 and various 
values of c is found to change from class (a) to class (b), followed by class (d) with 
increasing c. 

In figure 14(a), the values of Y * and 8' for ellipsoids with a = 0.7, b = 0.175 and a = 

increases with increasing a for fixed values of a/b.  Consequently, c t  and cs  are further 
apart for ellipsoids with a = 0.9, b = 0.225 compared to the case of a = 0.8, b = 0.2, so 
that the behaviour of class (b) occurs in a wider range of c for a = 0.9, and b = 0.225. 
On the other hand, c t  seems to be larger than c s  for a = 0.7 and b = 0.175, which 
results in the simultaneous presence of points P and Q in the range of cs  < c < c t  
for ellipsoids with a = 0.7 and b = 0.175 (class (c)). Thus, in the case of a = 0.7, 

0.9, b = 0.225 are also shown for comparison. It is suggested that c t decreases and cs 
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b = 0.175 and various values of c, there is a class (c) behaviour for cs < c, although 
it is not apparent whether a further increase of c monotonically decreases Y * to zero. 

In order to examine the effect of b on the particle behaviour, we plot Y'  and 8* 
as a function of b, for several values of a and c (see figure 14b). It is seen that, in 
general, Y' increases and 8* decreases with increasing b, which is opposite to the 
tendency obtained for c (see figure 14a). Thus it is suggested that an increase (or 
a decrease) in b has a similar effect on the particle behaviour to a decrease (or an 
increase) in c. Since type (iii) motion is more likely to occur for smaller Y *, figures 8 
and 14 suggest that such an oscillatory motion is favoured for ellipsoids with large 
a, small b and large c. On the other hand, type (iv) motion is more likely to occur 
for larger O * ,  suggesting that this type of motion is favoured in cases of small b and 
large c. 

More systematic analyses are required to classify the particle behaviour in more 
detail, and to explore the dependence of the stable configuration points R1 - & on 
various parameters. More complicated motions of an ellipsoid in the cases when the 
configuration is not necessarily symmetric with respect to the (x,, x*)-plane are left 
for further studies. 

5.  Concluding remarks 
It is well known that the bulk properties of a suspension of rigid non-spherical 

particles depend strongly on the orientation of the particles. As mentioned in the 
Introduction, any axisymmetric particle will remain indefinitely in any given closed 
orbit, and thus the distribution of particle orbits is completely determined by the 
initial distribution of orientations in the suspension (Jeffery 1922; Bretherton 1962), 
unless effects of fluid and particle inertia, Brownian motion, inter-particle interactions, 
non-Newtonian properties of the suspending fluid, etc. are taken into account. Among 
these effects, Leal & Hinch (1971) and Hinch & Leal (1972) examined the effect of 
Brownian motion, and Brady and coworkers considered inter-particle interactions 
in studying suspension rheology of prolate spheroids (Claeys & Brady 1993~-c). 
Pozrikidis and coworkers have extensively studied the motion of ordered suspensions 
of liquid drops and their rheological properties, with and without the presence of 
boundary walls, and pointed out the significance of the boundaries on the structure 
and effective rheological properties of an emulsion (Zhou & Pozrikidis 1993a,b; Li, 
Zhou & Pozrikidis 1995). 

For tube flow, the present study suggests several possible types of motion of 
single ellipsoids, and shows that an ellipsoid in tube flow will mostly exhibit periodic 
motions whose orbits are determined by the initial condition. Exceptions are type 
(i'), (ii') and (v) motions where particles will eventually attain particular geometrical 
configurations. In all cases, the additional pressure drop due to the presence of an 
ellipsoid was found to depend strongly on the lateral position and orientation of the 
particle, as well as on the axis ratios and the particle size (see for example figures 4 
and 7). In order to relate these results to the bulk properties of suspensions, it is 
necessary to elucidate the stability of the particle motion and the distribution of the 
orientation and position of the particles. 

This research was supported in part by a Grant-in-Aid for Scientific Research 
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